Abstract

In a Bayesian environment with independent values and a discrete public
good, the Interim efficient allocation rules involve a virtual cost-benefit
analysis and incentive taxes. Compared to the classical Lindahl-Samuelson
solution there are generally distortions that depend on the welfare weights
because the efficient way to reduce the tax burden on low-valuation (resp :
high-valuation) consumers is to reduce (resp : increase) the level of provi-
sion of the public good. We also show that for each interim efficient me-
chanism there is a dominant strategy mechanism—a referendurm—that
approximates the performance of the efficient mechanism in large popula-
tions. In this mechanism, individuals vote for or against production of the
public good. If a sufficiently large fraction are in favor the good is provi-
ded and costs are distributed equally across the population. Otherwise the
good is not produced.
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1 o Introduction

In this paper, we consider the following classical public
goods problem. There are N individuals in a group who are to
decide on a level of a public good that is produced according to
constant returns to scale. A maximum possible level, as determi-
ned by technology, is fixed at Y = 1. If an amount equal to g € [0, 1]
is produced, it costs a total of K¢, where K is a positive constant.
In addition to deciding how much (if any) public good to produce,
the group needs to decide how to tax the individuals in the group in
order to cover the cost. The distribution of the burden of taxation
is important because different individuals have different marginal
rates of substitution between the private good (taxes) and the pu-
blic good (). These individual marginal rates of substitution are
private information; that is, each individual knows his or her own
marginal rate of substitution, but not the rates of the other members
of the group. Adopting a Bayesian mechanism design framework,
we assume that the distribution of marginal rates of substitution is
known.

We characterize interim efficient mechanisms for the pro-
duction of public goods in this framework, when the joint distribu-
tion of types is independent across the individuals. An interim effi-
cient mechanism is a mechanism such that a Bayesian equilibrium
of the mechanism generates type-contingent expected payofis to
the members of the group that maximize a type-contingent welfare
function.

This problem has been solved for the special case of quasi-
linear utility, for one particular set of welfare weights (d’Aspremont
and Gerard-Varet 1979), in which efficient production sets output
at g = 1 if the sum of the marginal rates of substitution exceeds the
production cost, K. Otherwise, ¢ = 0. The problem has also been
solved for arbitrary interim welfare weights for the case where the
types are identically distributed and can only take on two values
(Ledyard and Palfrey 1994). In that case, it was shown that optimal
production always takes a special form in which ¢ = 1 if and only
if the number of high valuation types exceeds a threshold number,
j, where 7 depends on the welfare weights and the distribution
of types. The greater the welfare weight on high valuation types,
the lower the optimal threshold. With more than two types (as in
this paper) the optimal mechanism generally depends on the exact
profile of types in a more complicated way.

In this paper, we characterize the solution and obtain some
comparative statics about how the optimal mechanism changes
with the underlying distribution of types and with the welfare
weights of the welfare function. In-addition, we look at the asymp-
totic properties of the optimal mechanism in the symmetric case,
where the type distributions and welfare weights are identical -
across agents. We show that in large populations the performance
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" of the optimal mechanisms can be approximated by using simple
voting schemes in which Y is produced if and only- if a threshold
proportion of “yes” votes'is miet, and costs are shared equally by all
types of all agents. We call such a scheme a referendum. In particular
we show that for every interim efficient mechanism there is a refe-
rendum such that the aggregate welfare achieved from the voting
scheme converges, as the population grows, to the aggregate wel-
fare achieved from the interim efficient mechanism. Conversely for
every simple voting scheme there is an interim efficient mechanism
such that aggregate welfare converges.

2 ¢ The Model

There are N people who must decide on the quantity, g of a
public good that is produced according to constant returns to scale
and has a maximum level Y = 1. The cost of producing ¢ € [0,1]
is equal to Kgq. In addition, they must decide how to distribute the
production costs. Because of the linear production technology, the
optimal level of the public good will always be either 0 or 1, so this
is equivalent to a problem of deciding on whether or not to produce
a discrete public good. We let a* denote individuals s share of the
cost, in units of the consumption of the private good, and assume
it can take any real value. Therefore the set of feasible levels of
production and cost shares are given by

@!,...,aN, 9 e RN x[0,1]

such that

N
with K¢ £ Z at.
i=1

2.1 Preferences

Individual preferences are assumed to be quasilinear in the
level of public good production and the taxes (cost shares), so the
utility to type v* of agent i for an allocation (g, a) is given by

V? = 0ig —at.

Thus, types correspond to different marginal utilities of the private
good, and v* represents the marginal rate of substitution between
the public and private good, or “public good valuation” of type v*.
We refer to v* as player i's “value.” We assume that each indivi-
dual knows his own value, v%, and does not know the values of the
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other individuals. We assume that the individual values (v*) are in-
dependently distributed, with the (common knowledge) cdf of i's
value denoted F;(-) and the support of F; is Vi = [*, 7], where
vt < K/N < 7 . We assume F; has a continuous positive densnty on
Vi, Note that v* < 01 is allowed.

Clearly under these assumptions, our choice of normaliza-
tion of the utility function is arbitrary up to an affine transformation.
In particular, it is equivalent (in terms of individual decision theory)
to the models of asymmetric information about contribution costs
(a"), where utilities are normalized so that the margmal ut\hty of

the public good (v) equals 1 provided v > 0. So that u* = g — ( )a

However,the class of ex-ante incentive efficient mechanisms (m the
sense of Holmstrém and Myerson 1983) will be different under the
two normalizations. So, below, we will focus on the set of interim-
incentive efficient mechanisms. That set is independent of whatever
(type dependent) normalization one chooses.

3¢ Mechanisms

A mechanism consists of a message space for each agent
and an outcome function mapping message profiles into probability
distributions over the set of feasible allocations. By the revelation
principle, the properties (in terms of allocations) of any optimal
mechanism can be duplicated by a direct mechanism in which the
message space for agent i is simply the set of possnble types (va-
lues) in the support of F;. A strategy for i is a mapping o* : V* — V?,
that is, a decision rule that specifies a reported type for each pos-
sible type. We refer to the identity mapping as the truthful strategy.
By the linearity we have assumed in the individual utility functions,
there is also no loss in restricting attention to deterministic mecha-
nisms. Thus, we will denote a feasible direct mechamsm simply as
a function

vl —F

where

N .
F={@,...,a", 9 e R x [0,1]]Y o’ > Kq}.

i=1

We denote the public good allocation component of 7 at
type profile v by q(v), and the private good tax for ¢ by a*(v).
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3.1 Incentive Compatibility

Besides feasibility, the main restriction on 7 is that it be in-
centive compatible, which means that it is a Bayesian equilibrium of
n for all agents to adopt a strategy of truthfully reporting their type.
Given a strategy profile o, a type of agent i, v*, and a mechanism, 7,
let the interim utility of type v* of agent i be denoted by :

N X C ORI CONCEY

where ~
dF (W) = dFy(wY) x ... x dFn@™)
Vo =VIx . xvilxyil o xvV
and ‘ )
o@) = ['@"),..., eV @™M)]
ot ViV
Let

ut(n, %) = @' (n,v', 1)

where I denotes the identity map (truthful strategy):
Iw)=w.
Then 7 is incentive compatible iff
ui(n,v*) = @y, vt I/0Y)
for all v?, 0% € V1.

For smooth mechanisms, when preferences are linear, the
characterization of incentive compatibility in terms of derivatives is
well-known. There are basically two features of such mechanisms.
First, an envelope condition is satisfied, namely that the total deri-
vative of the interim utility for ¢ with respect to type when players
adopt truthful strategies is equal to the partial derivative with res-
pect to type (i.e., fixing the reports of all agents). Second, the in-
terim utility to ¢ under truthful reporting is convex in ¢’s type. This
is stated formally below. '

Lemma. (Rochet, 1987)

If 4¢ linear in v* and 7 is twice continuously differentiable,
then 7 is incentive compatible iff

Vyiul(n,v*) = Vyu@'(n, v*, I), and

u*(n,v") is convex in v*.
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! For the remainder, we simply
refer to such allocations as
“interim efficient.”
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3.2 Interim Efficient Allocations

The set of interim efficient incentive compatible! allocation
rules is the set of incentive compatible and feasible allocation rules
such that there exists no other incentive compatible and feasible -
allocation rule that makes a positive measure of types better off
without making a positive measure of types worse off. This can be
represented as the solution to the following maximization problem.
Let A > 0 be a system of welfare weights, or a measurable function
mapping types into the positive real line, so that \;(v") represents
the welfare weight assigned to type v* of agent . Then 7 is interim
efficient if it maximizes

S [ i, 090

over the set of all feasible and incentive compatible mechanisms.
Since the set of feasible mechanisms is not a compact space, we
need restrictions on the welfare weights to guarantee that the solu-
tion of this maximization problem is well defined.

‘ First, problems occur, even for constant mechanisms, if
o A@dF;(v?) is not finite for all i. Thus we restrict ourselves

to V¥, F%, and () such that [ A (w9)dF;(?) < co.

Furthermore, since utilities are linear in the transfers, for
some welfare weights total welfare can be made arbitrarily large
simply by making ex ante transfers from one individual to another
individual. That is, if, for two agents ¢ and j, it were the case that

[ W Ai(8)dFi(s) < / ﬁ A($)dF;(s)

then total welfare could be made arbitrarily large by making ex ante
transfers of the private good from i to j. Thus, a solution to this
problem only exists when the welfare weights are, in expectation,
the same for all agents. Thus we restrict the welfare weights to
satisfy '

/ ﬁ A (8)dFy(s) = A .Vi.

3.3 The Optimization Problem
We can now represent interim optimal allocation rules as a
solution to a constrained maximization problem, and use standard

techniques to characterize the solutions. To do this we use the
Lagrangian approach, as in Mirrlees (1971) and Wilson (1993).

ot . ,
max min Z / A (W)U (m, v)AE;(v*)
n Y8 P v . .
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+/ 6(v) [Z ai(vj - Kq(v)] dv.
v i
where ' and  are multipliers for incentive compatibility and fea-

sibility, respectively. To solve this, we first apply Green’s Theorem
and substitute the identity v*(n, v*) = @*(n,v*, I).

This converts the maximization problem to:

maxgin 3 | {26+, DINGH ) - 0

4@ D} v+ [ 50) (Z @' - Kq(v)) dv

: Z /avi @t(n, vt 1) - @&

where 8V denotes the boundary of V* and ¢; points outward at v,
The last term will equal zero and drop out in the optimal solution,
s0 we suppress it in what follows.

This reduces to:

.  Yinei iy Y
qefg,al)](ai,%l,?/; l:()\z - f)(v qg—a’) — Eq} dF

+ /6(Zai — Kq)dv

This is a Kuhn-Tucker problem, the first order conditions of
which are given below.?

3.4 First Order Conditions : (where y-s/f)

Differentiation with respect to g(v) yields:

> @ Nifi — v — )/ fi —vK 2 0if g =1

7

D @i — v — )/ fi—vK = 0if g€ (0, 1)

D Wi — v — )/ fi — YK < 0ifg=0

2 The analysis that follows
assumes implicitly that second
order conditions are satisfied. If
not, then the optimal solution
will involve some pooling of
types. The second order
conditions are analyzed in a

later section.
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3 This is the point at which the
boundary condition from the
Lagrangian expression comes
into play. )
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Differentiation with respect to a*(v) yields
~Qifi =) +1fi=0
Differentiation with respect to § yields:

> a'—Kg=0ify>0

7

>t~ Kq>0ify=0
1

Differentiation with respect to v;(v) yields the Euler equa-
tion:

i}l—i [/V_i ai(v)dF(U!Ui)} _ ”iEdJ [/v—" q(v)dF(Ulvi)]

Finally, there is a boundary condition® on 1; that implies v;(v) = .

$;(0) = 0.

These conditions can be rearranged to yield the following
results. First, from the first order conditions on ¢ and q, it is easy to

show that v is constant in v. Next, from the first order condition on
a, we get :

Y= i —Nfi
or dip; = (A — Y)AF;

b ) ) )
= 4D = [ MEMRE) - 7RO,
vt _
From the boundary condition on 1; this implies :

1= [ MehHareh <X

SO

%) = FoD (A7 @) - X)

where A\ (v*) is the expected value of );, conditional on i's valua-

tion being less than or equal to v*. Also, substituting the first order
condition on ¢* into the first order conditions on g we get :

- (i @Y -
11— (- 565) 2 K

Since the solution to the optimization problem is unchanged
if we divide by the constant, ), we can normalize the welfare weights
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so that X = 1, by dividing A;(v*) by Xfor all i and for all +%. This gives

us.
1=1 = Z( ' ?fg;)))

3.5 .Optimal Public Good Production

F(v)

Call w* = v*— Oy @) - D), type v of agent i’s virtual

valuanon forg(ala Myerson) Then the optimal production decision

is to produce 1 if:
Yotz K
i

and otherwise produce 0.

This is a virtual cost-benefit criterion. The virtual utility has a
familiar interpretation (see for example Myerson 1981). It equals the
“true” public good valuation of the v*-type inflated* by a factor that
depends on the distribution of types and on the welfare weights.
The benchmark case is the one where A(v%) = 1 for alli and +*. In this
case the first best optimal level of publlc good is 1 or 0 depending

only on whether or not ), [v* ~ ——] 0. That is, produce if and

only if the sum of the marginal rates of substitution exceed the
marginal production cost. This is the Lindahl-Samuelson solution,
precisely the solution investigated in most previous papers on the
optimal provision of public good. (See d’Aspremont and Gérard-
Varet 1979). This simplification arises because the allocation of the
private good (i.e., the incidence of the costs on different types) does
not affect social welfare. For this reason, incentive compatibility
does not reduce social welfare relative to the first best solution.
However, it must be emphasized that this is a very special case.
It is in fact the only system5 of welfare weights where incentive
compatibility does not cause distortions relative to the first best
solution.

To better understand the intuition behind the virtual valua-
tions, one can think of the mechanism operating in the following
way. Each agent (truthfully) reports a valuation. If the public good
is produced, then each agent pays the incentive tax, which equals a
constant plus that agent’s valuation minus his "informational rent”,

1 - F;(v)
£i (W)
amount that can be extracted from an agent, given incentive con-
straints. Of course, in this public good problem, the objective of
the mechanism is not to extract rent from agents, so any excess
incentive tax will be distributed lump sum back to the agents, by

. Recall from standard incentive theory that this is the

4 This could be deflated if

Pi(v®) > 0.

5 Actually, this is the only system

of welfare weights in which a
first best solution exists. For any
other weights, welfare can be
arbitrarily increased by shifting
the allocation of the private
good to one particular type of
some individual. Since we
impose no feasibility bounds on
the allocation of the private
good, this means that the first
best solution does not exist. Of
course, with incentive
compatibility constraints, the
second-best problem is well
defined.
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adjusting the incentive tax by a constant. Thus, if the good is pro-
vided, the government spends K to produce the public good and
makes a lump-sum refund (which is formally captured by the con-
stant i.e. independent of v*) that is added to each agent’s incentive
tax. The portion of this refund that comes from type v* of agent i

— Bt
equals (v* — l—f—l(i’z(—)qil - —]I({]—). There are two other terms that com-
vV

plete the social cost/benefit picture, as it concerns type v* of agent
i. One is simply that producing the public good produces a direct
benefit of v to agent ¢, which is valued socially as A (wh)vt. Last but
not least, is the fact that the incentive tax (before refund) is a social

RN GIG)
fi(w¥) '
Collecting all these terms, gives us type v* of agent i’s con-

tribution to the marginal net social value of producing the public
good. Denoting this by w*(v?), gives us :

cost, and this social cost equals A\;(v¥)v* -

T = M@ = DaCotet — Ae I

]

fi@®
;. 1-F@) K
T TRey . W
i LAY JEMEARE) K
fi(Wh) fi@W®) N
K
=w' (') - ~

which is the cost adjusted virtual valuation of type v* of agent i.

Notice that in the special case of neutral distributional
weights,

Tl . . o
/ " ANEAEE) = 1- F@,
so that

G . . .
A — Jo M )aFE) _ i Lo R0Y ’
i) . fi(w®)
and as a result there are no welfare costs associated with charging
the incentive taxes in a type-dependent way and then redistributing

them back in a lump sum fashion. Otherwise there is a cost to doing .
this.

Examples of plausible non-neutral welfare weights would
include cost sharing rules in which_ individuals valuing the public
good more (higher values of v*) bear a proportionally larger share
of the costs (Jackson and Moulin 1992). Social welfare functions of
this sort imply a system of welfare weights that are decreasing in
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type. Notice that if ); is decreasing in type then generally the interim
efficient solution calls for underproduction relative to the Lindahl-
Samuelson solution, since ;(v*) is positive for all types. That is, the
virtual valuations are always less than true valuations, so the sum
of the true valuations must more than exceed the production cost
in order for production to be optimal. Conversely, if A; is increasing
in type, then there should be overproduction relative to the Lindahl-
Samuelson solution.

3.6 Optimal Cost Allocation

So far, we have only analyzed the optimal public good deci-
sion, and have ignored the optimal taxes (cost shares). It is fairly
simple to show that for an optimal public good provision rule, there
exist feasible and incentive compatible cost sharing rules with no
budget surplus. Given g(v) from above, incentive compatible and
feasible (and no budget surplus) cost sharing requires

(@) ;0 (W) = Kq(v) for all v [since y = £(X) = 1 > 0] and

d ; , o d : .
® o [ doarenn) v [ [ awdren)
where (a) is feasibility and (b) is incentive compatibility.

Since (a) and (b) depend on X only through ¢, we can use
standard tricks to rewrite the problem in terms of reduced form®
allocations. Thus we let

Q)= [ a)F(V-)

AW - [ @),

Now let
) v? 1 v )
d@) = | 1dQi® -7 | dQ;()+'(®)

where

at() = [q(v) Qi") +

> Qj(vj)] .
J#

. . . . . s 6
It is a straightforward exercise to verify that this cost sharmg rule By reduced form, we mean that
the allocations are written in

satisfies feasibility and incentive compatlbllity smce [A (v ‘)] terms of Interim expected values
of g and a, which we denote
vt [Qi @i)} . : Qi(v*) and A;(v).
dv* :
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3.7 Second Order'C_onditions

The analysis above assumes implicitly that second order
conditions for a maximum are satisfied. If the second order con-
ditions are not satisfied, then there will generally be pooling of
types.’ To eliminate pooling, of course, requires some additional as-
sumptions about thedistribution of types and the system of welfare
weights. In particular, the second order conditions for a maximum
are satisfied as long as v is convex in v*, By definition; u is given by :

u:v"/V_Aqu_i—/V_'aidF_i

From the first order conditions for incentive compatibility we have

Uyi = / qu—i-
Vo

Uyigyt = / .q,vidF.
V‘z

Therefore, the second order conditions will be satisfied if

Thus

/V _ udF = Q\wh > 0.

or, in other words, if the interim expected probability of produ-
cing the public good is not decreasing in type. This is a sensible
condition, since one would expect the optimal mechanism to be
responsive to types in this direction. Recall that

/ gdF_; = prob |y w/(@’) > K —w'(h)|.
v i

So asufficient condition (since valuations are independently
distributed) for the second order condition to be satisfied is that
w’ > 0; that is, the virtual utility of public good production is nonde-
creasing in type. In the case of Lindahl-Samuelson welfare weights
this is always satisfied since w* = v*. However, in general, this is not
a trivial condition to fulfill. From above,

i o LT E@D JZ MR
RACY) S ROY

~ The first term, u?', is clearly increasing in vt. The second
term, (1 — F)/f, or the “informational rent”, is typically assumed
to be monotone in v* in adverse selection models in private goods
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env1ronments by requiring the dlstrlbutlon to satlsfy a monotone
hazard rate condition.

Here, in our setup where the incidence of incentive taxes
. can have welfare effects, there is a third term which reflects a fur-
ther adjustment to the information rents, depending on the welfare
weighting scheme. Thus, we need more (or less!) than the stan-
dard monotone hazard rate condition to guarantee that second or-
der conditions are satisfied. These additional conditions will imply
restrictions on the distribution of welfare welghts as we illustrate
in the following example.

3.8 Example |

Let » be distributed uniformly on [0, 1] for all £, so F'(v) = v
and f(v) = 1. Then w(v) = 2v— f; A(t)dt and w' = 2— A(v). Therefore,
the second order condition is globally satisfied for uniform distri-
butions of valuations if and only if the maximum welfare weight
is less than or equal to 2. Thus, if A(v) = 2(a + bv)/(2a + b), where
a > 0 and 2a + b > 0, then we are always in the ‘regular” case
where virtual valuations are monotonic in type ? and the second
order conditions are satisfied. If & > 0 (high valuation types re-
ceive more weight) then production will occur more often than in
the Lindahl-Samuelson solution, while if b < 0, the reverse it true.
However, there are A such that the second order condition is not
satisfied, even for uniform distributions. For example if A(v) = 3v?
then virtual valuations are decreasing for v > /2/3. Similarly, if

A() =30 - v)? virtual valuations are decreasing for v<1-4/2/3.

It is also instructive to use this example to illustrate the
range of public good provision rules (or cost-benefit criteria) that
are interim efficient. Suppose N = 2, K = 1. The Lindahl-Samuelson
efficient outcome is to produce if and only if the average valuation

: 1
exceeds 7

pose one shifts welfare weight to the low valuation types, to the

point where A\(v) = 2 for all v < l and M) =0 forallv > —;— This

satisfies the second order condltlons and it is easy to see that the
optimal mechanism is to produce if and only if v! + v >3 3, S0 the

so the public good will be provided half the time. Sup-

public good is only provided with (ex ante) probability % At the

other extreme, suppose the welfare welghts are shifted in the oppo-

site direction, with A(v) = 2 for all v > % and A(v) =0 forall v < ok

In this case the optimal mechanism is to always produce except if

vlev? < %, so the public good should be provided with probability
7 N

8"

If welfare weights are not equal,
then there must be an
adjustment to the information
rents, since the “planner” now
has distributional preferences
over which types of agents
should receive these
information rents. When welfare
weights are equal, the planner
simply wishes to minimize the
expected information rents
subject to incentive
compatibility.

The irregular case is explained
geometrically in Guesnerie and
Laffont (1984) for the case of
one agent. The irregular case in
this paper can be dealt within a
similar manner. See Ledyard and
Palfrey (forthcoming) for more
details about this.
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10 | edyard and Palfrey (1994) used
the term lottery draft, since
equal cost sharing is equivalent
(in expected utility) to randomly
selecting, or drafting, M < N
individuals to contribute an
equal (X /M) share to the
production of the public good. If
the private good spaceis
discrete, randomization of this
sort is needed.
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4 ¢ Simple Public Good Mechanisms

We next compare the efficiency of interim efficient mecha-
nisms with the efficiency of significantly simpler mechanisms. In
this section, we restrict attention to the symmetric case, where
Fi(v) = F;(v) = F(v) and \;(v) = A\;(v) = M) for all 4, j,v.

4.1 Referendum mechanisms

We identify a class of particularly simple mechanisms,
which uses a drastically smaller message space than the direct me-
chanism. In fact, each individual transmits only a single binary bit
of information, which we call a “vote.” Thus it is as if each individual
is asked whether or not he would like to have the public good pro-
duced. If enough voters say “yes,” then the public good is produced
and the cost is shared equally. We call such mechanisms referenda
with equal cost shares!0. :

To be specific a J*-referendum has the following three pro-
perties:

(a) Each 1 votes, b;, yes (= 1) or no (= 0).

(b) The good is produced if },b; > J* and is not produced if
ZZ bZ < J*.

(c) Each ¢ pays %— it it is produced and 0 if it is not.

Thus, in a J*-referendum each individual casts a vote either
for or against the production of the public good, which is produced
if and only if at least J* “yes” votes are cast, and costs are split
equally. For each voter, it is a dominant strategy to vote yes, if and
onlyifv’ > K/N.Theincentive compatible direct revelation version
of this is: : ‘

q(w) = 1 iff#{iyvi > 5} > J*
N
K .
a;(v) = TV_q(U) for all ¢

The reason for consideﬁng such mechanisms is that, as we
show below, they are almost interim efficient in large populations.
By this, we mean that the efficiency loss.from using a referendum

instead of an optimal mechanism approaches zero in large popula- -
tions. -
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4.2 Approximate Optimality of Referenda

It is fairly easy to see that in finite populations referenda are
generally interim inefficient, except in extreme cases where the cri-
tical level of J* is equal to either 0 or N, in which case production is
independent of the realization of the type-profile, v.11In spite of the
inefficiency of the J*-referendum, one can obtain an approximate
efficiency result when N is sufficiently large. In letting N grow, we
permit K to vary with N, but keep & fixed, where k = K(N)/N. That
is, the per capita production costs of the public good are held fixed.

4.3 Per Capita Wélfare Losses
from the s-Referendum

Given the welfare weights, )\, we look at the J*-referendum
with the property that the expected sum of virtual utilities, if exactly
J* individuals vote for production of the public good, is equal to
kN. For this voting rule, asymptotically in N, the public good will
be produced if and only if the average virtual utility is greater than
or equal to k. By the law of large numbers, this will therefore almost
surely produce the optimal level of public good. (Either full pro-
duction or zero production depending on whether average virtual
utility exceeds or falls short of k.) Also, since the interim expected
public good production (Q;(v%)) is type independent in the limit,
incentive compatibility requires that the interim-expected optimal
taxes approach equal cost shares as the number of agents goes to
infinity. Therefore, in the limit as the number of agents goes to in-
finity, the J* referendum generates the same per-capita expected
welfare as the optimal mechanism.

If there is a per-capita cost to operating a mechanism that
is increasing in the size of the message space, then for a sufficiently
large number of agents voting rules outperform the “optimal” me-
chanism computed in the previous section of this paper. This is
demonstrated formally below.

Consider a sequence of Jy-referenda where J3, = j*N is
~ set!? such that the expected total virtual utility, if exactly j* fraction
of individuals vote “yes,” equals kN. Denoting w* = E[w;v > k] and
w~ = E[w;v < k], this requires choosing j* so that j*w* + (1 —
7w~ = k. What we do below is to replicate the economy, keeping
the distribution of individual types constant and also keeping the
per capita cost of producing the public good constant, and compare
the per capita surplus using this j* rule to the per capita surplus
using the optimal rule, and show that in the limit they are the same.

11

12

An example of this arises when
vt is distributed on the [1, 2]

interval for all ¢, and N <1,

and )\’ = 0. In this special case,
production is always optimal
independent of the actual draws
of v. Of course, in this case,
there is no need to elicit
messages from the agents at all.
So J* = 0 is efficient.

Since N is finite, there is
generally no exact value of j*
satisfying this equality
condition. What we mean
precisely Is that

((Jy —D/N)E[w;v > E]+((N —
Jxn + D/N)E[w;v < k] < kand
(I + D/N)E[w;v > k] + (N -
Jyn —D/N)E[w,v < k] 2k
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Theorem 4.1

Let Ky = kN, k fixed. Let \;(v%) = M(v%) and f;(v*) = f(v)Vi. Let j*
satisfy j*w* +(1 —j)w™ = k. As N — oo the referendum mechanism
using J3; = j*N is almost interim-efficient in the sense that it satlsﬁes
mcentwe compatibility and feasibility and

¥ 3 [ etk are
O3 RGO PG

where n L denotes the J3-referendum mechanism with N individuals
and 1%, denotes the optimal mechanism with N individuals.

Proof. Denote by “Y,” the number of yes votes. By construction
of j*, E[>,w;/N | “Y” = j*N] = k, so that if there are at least
4*N votes, then the expected sum of virtual benefits is greater than
or equal to Ky. As N — co, by the strong law of large numbers,
the expected average virtual benefit when exactly j* fraction of the
voters vote “Yes” will converge in probability to k. In other words,
the probability that this J3; rule and the optimal rule make different
production decisions for the same profile of types approaches 0 in
the limit.

Now consider the reduced forms for the j*-referendum me-
chanism :

QYL@ - / %L @)AF ()
V_i

= Prob. {Z Y (VN = 5% - (bi(qﬂ')_ /N) }

J#

where 1 il >k
i v rdN l’U_ Z kK
YD =0 itvi <k,

SN A SOU ORI A
and for the interim-efficient mechanism

Q" = Prob. {T,4wI@)/N > k- @' )/N)}
AL = v, afW)dF (). '

For large N, Q") ~ Q},(v") for all v'. Incentive compa-
tibility then implies that for large N, A () ~ A?V(v’) for all v,
Therefore, for large N, . .

RGeS AFGH) — / A PG
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Since all individuals are identical,
=3 / MOtV F, v)dF () = / AV E vDdF ()

N 1, Vt‘ Vi
S0,

15 [ s

- % 2 /V MYy, ') dF ).
n

While this is a useful result, as far as justifying the use of
simple dominant strategy mechanisms for public good decisions,
it would be nice to have a stronger result. The reason to look for
a stronger result is simple. One can show that in the limit, for any
optimal public good mechanism, the limit of Q is either 0 or 1,
depending on the distribution of types and the welfare weights.
Thus, using a similar argument as in the proof of the theorem above,
one can show that any sequence of voting rules (or any sequence
of mechanisms in general), with the property that the expected
production of the public good in the limit is the same as the optimal
mechanism (either 0 or 1, respectively), will also generate the same
per capita welfare benefits as the optimal mechanism.

Suppose for example that E[w] > k. The the mechanism
“always produce,” while being suboptimal for any finite value of N,
generates the same per capita surplus as the optimal mechanism in
the limit, since there is almost surely production of ¢ = 1 in the limit.
- Moreover, any j* N —referendum that fixes j* less than some critical
level, is asymptotically optimal. Alternately, suppose that E[w] < k.
Then the mechanism “never produce,” while being suboptimal for
any finite value of N, generates the same per capita surplus as the
optimal mechanism in the limit, since there is almost surely zero
production in the limit. Thus, one would hope to be able to find

a stronger notion of asymptotic efficiency that could differentiate
between simple mechanisms.

4.4 Total Welfare Losses |
from ;*n-Referenda

One possible stronger criterion for asymptotic efficiency .

is the total (as opposed to per capita). surplus loss of the j*N-
referendum compared to the optimal mechanism.

By symmetry, the total expected welfare from the optimal
mechanism is equal to:

Wi =N [ A@IQRG) — ARWIFE).
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and the expected welfare from a j* N-referendum is :

uw;N/x@m—mqun@

Therefore, the difference in the expected total welfare (i.e., the ex-
pected welfare loss) is equal to:

AWN WJ
N / " AW — Q@) — Qs @)AFE)

- | " AW)AZ @) - kQ% @)AF (@)

Thus, the expected welfare loss is divided into two terms. The ma-
gnitude of the first term is on the order of N times the average ex-
pected differences in the reduced form production decisions, Q%;

and QJN The magnitude of the second term is on the order of N
times the expected difference between equal cost sharing in the
referendum and incentive compatible cost sharing in the optimal
mechanism. Below, we show that for the j* mechanism satisfying
E[Y; w'/N | #{j : vJ > k} = j*] = k, the expected total welfare loss
goes to zero in large populations.

We begin by considering the first term, N f; AW — k)

@W)%@M@mmmmmeMMMm
nistic in the limit (i.e., equal either 0 or 1). Thus if j* is not chosen
so that QJ ~ Q% then we know that the expected welfare loss
goes to mﬁmty However, we know from above that for j satlsfymg
E[3;w'/N | #{j : vJ > k} = *] = k we are guaranteed that Q’N
Q%- Thus, we only need to obtain a rate of convergence to 0 for
Qg\;— Q% and show that this converges to 0 very fast. We show
below that the speed of convergence is at least on the order of
VvV Ne~N, so N times the expected difference in interim quantities
converges to 0, and hence the ﬁrst term goes to 0 in N,

In the optimal mechanism, the good is produced if and only
if Z {/N > k. Thus, for an individual with private value equal
to v*, the interim expected output under the optimal mechanism is
simply the probability that the sum of all the other virtual valuations
is greater than or equal to Nk — w(v*) which equals the probability
that the sample average virtual valuation of the other players is
greater than or equal to [Nk—w(v*)]/(NV —1). Denoting the expected
value of the virtual valuation of an individual as w, we know from the
Central Limit Theorem that the sample average virtual valuation of-
N — 1 has an asymptotically Normal distribution with mean @ and
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standard deviation oy, /(IV — 1), where oy, is the standard deviation

of w. Thus, we get »
. : iu(v) ~k
‘W‘@‘<TV?T)
ow/(N —1)

Q¥) —=1-9

. where @ is the cumulative of the unit Normal distribution. Similarly,
we can obtain an expression for the asymptotic value of Qg\; (). It
depends only on whether or not v is greater than or less than k.
Denote by b(v) the vote of an individual of type v, which is equal to
1 if v is greater than or equal to k and equals 0 if v is less than k.
Denote by b the ex ante probability of a yes vote (which is simply
equal to 1 — F(k)), and which also equals the expected fraction of
individuals voting yes. Then by a similar argument, we get that

z ‘b(v) - j*
G- - (TRl
Q{,(v)—»l—@ ( N-1 >

op/(N — 1)

where oy, is the standard deviation of b.

* By construction of j*, limy_,., Q%) = limy_,o Q}:,(v).
That is, b — j* > 0 if and only if w — k£ > 0. The difference Q%;(v) —
3\',(1)) converges to

., By
Q?V(v)—ng(v)mﬁ /A e %24y

where _
Ay - YNG4 b)) i
Ob (Tb\/N
and
B ~ VN@-k  w@) -k
N o owV/N
Without loss of generality, assume that bA— J > v k, so that,

oy 2
for sufficiently large N, Ay < By. Then for large N, Y

N w—k\’
1 Cw

2m°

Q?V(”)”Q%(v) ~ N1/2 (P_l 3 w—k)

Op Ow

Therefore, the expected difference between the interim expected
quantities under the optimal mechanism and the j* mechanism,

NQY®@) — QJN (v)), is on the order of N 3/2¢—N which converges
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to 0 in N. This establishes that the first term of the expression for
the total surplus loss goes to 0.

The second term of that expression is
v " AL @) - K ONAFE)
v
This can be rewritten as -
/: /\(v)[N(A?v(v) — A - NKQ{ @) - DIdF ().

which can be further broken down into two terms :

/ ’ MV)N (A () — A)dF(v)

and

| @i -ar.

v

Consider the second of these terms. Because A(v) is boun-
ded, we just need to show that

[ ¥iase -2 1are —o.

The expression | Q%,(v)—@) |is less than or equal to QA ®—-Q% @),
so we only need to show that

/ " NIQ3y(®) — QY @1AF @) = N[QX®) — Q%y@)] — 0.

_ .k w(v)
Recall that Q%,(v) = prob{w — N_1 2 N1

gument similar to the one above, the difference Q%,(@) — Q%,(»
converges to

} so, using an ar-

. 1 BN 2 19
0 (D) — O (V) ~ -z*/24
QN(U) QN(T_)) \/—Z—ﬁ An € Z
where
4 _ _VN@-k) - w@)—k
N= Uw. ’ . Uw\/N
and : '
: VN@~k)  w@®—k
By = — : .

owVN

Ow
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‘This is.on the order of \/_]Ve_]\' , SO N[Qj’v(ﬂj - Q@] — O as
N — 0. Therefore ' ‘

/'U A)NEQN ) - @)dFCU) -0

as desired. By incentive compatibility, A= vQ’, and by assumption
v < U < oc, so-it also follows that

/ ’ AW)N (A% () — A)dF (W) — 0. .

Thus we have shown. that the fotal expected surplus loss
from the j* N— mechanism, with j* chosen so that E[Y; w'/N |
#{i:v* > k} = j*] = k, converges to 0 in N. This is stated below as
Theorem 2, '

Theorem 4.2 :

Let Kn = kN, k fixed. Let );(v%) = M(vY) and F;(v") = F(v*)Vi. Let j*
satisfy 7*w* + (1 — 75w~ = k. As N — oo the j* N— referendum using
is almost interim-efficient in the sense that it satisfies (I) and (F) and

> / NG SRR COEDY / AW (%, v)AF (o).

5e Conclusions

In this paper, we have characterized the interim efficient
public good allocation rules in a Bayesian environment with inde-
pendent private values and a discrete public good. We find that the
optimal mechanism involves either more or less production of the
public good depending on whether the welfare weights are shifted
in the direction of types with higher or lower valuations for the
public good. Thus, compared to the classical optimal level of pu-
blic good provision (the “Lindahl-Samuelson” solution), there are
generally distortions. The reason for this ‘distortion is that unless
welfare weights are perfectly balanced, optimal allocations depend
in general on both the level of public good and the incidence of
taxes to finance the public good. Because of incentive compatibi-
lity, the efficient way to reduce the tax burden on low-valuation
(resp : high-valuation) consumers is to reduce (resp : increase) the
level of provision of the public good. In the borderline case, the
first-best solution is attainable precisely because welfare weights
are balanced exactly so that the welfare function is independent of
distribution of taxes.
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We further show that there exists a simple dominant-stra-
tegy referendum mechanism which approximates the optimal me-
chanism in large populations. In this mechanism, individuals simply
submit a binary message (a “vote”) either for or against production
of the public good. If a sufficiently large fraction of the individuals
vote in favor, then the public good is provided and the costs are
distributed equally in the population. Otherwise, the public good
is not produced.

There are several directions in which it would be useful
to extend these results. First, the results were obtained under an
assumption on the distribution of types that guaranteed that the
solution to the optimal control problem was “regular.” This allowed
us to conduct the analysis using only the first order conditions. In
a completely general setup, we would have to include inequality
constraints that could be binding if the interim utility as a function
of type were not strictly convex. We expect that the main results
would still hold up, but the optimal solution would involve “poo-
ling” of types. Since the referenda we use are an extreme form- of
pooling of types, we expect that the ability to approximate optimal
mechanisms using voting mechanisms would continue to be true.

Second, we note that participation constraints were not im-
posed in our solution for the optimum. It is fairly easy to show that
when these constraints are binding, this implies a reduction in the
level of the public good, since these constraints are necessarily
binding on the low valuation types (Ledyard and Palfrey 1994). It is
also true that, except in uninteresting cases, these constraints will
imply Qxn — 0in the asymptotic results (Ledyard and Palirey 1994,
Mailath and Postlewaite 1990). But for the case of large N, it would
usually seem more realistic to assume that participation is gene-
rally obligatory to all members of the group under consideration,
as we have assumed here.

A natural extension of this paper would be to include a com-
mon value component to preferences. The presence of a common
value component would be particularly interesting since it would
no longer be the case that the exact distribution of valuations is
(approximately) known to the planner in the limit, as we find with
independent private valuations. Ledyard and Palfrey (1997) intro-
duce common values via a random shift parameter applied to the
distribution of private values. That paper proves that for each sys-
tem of welfare weights there is a uniguely defined referendum that
will be approximately optimal in large population.

Our results about the asymptotic optimality of referenda
were obtained by replicating a population with the same distribu-
tion of types. In the case where distributions differ across the po-
pulation, optimal referenda might involve asymmetric cost shares,
although we conjecture that referenda with equal voting weight
will still be asymptotically efficient. More involved extensions such
as relaxing the assumptions of independence of types would seem
more difficult to obtain using the approach here,
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